Machine Learning for Power Systems

- a. Course Code: EPE-819
- b. Title: Machine Learning for Power Systems
- c. Credit Hours: 3
- d. Objectives:
 - To impart the understanding of machine learning concepts essential for power systems students.
 - To comprehend the role of machine learning algorithms in smart power systems of developed countries.
 - To apply machine learning algorithms for the prediction/forecasting and classification/clustering needs of developing countries using tools and platforms widely used.
 - To discuss and understand the increasing role of machine learning in evolving power sector of Pakistan
 - To demonstrate an insight into the advantages, limitations, and risks connected to Al's role in society from the energy sector perspective.
- e. Outcomes

Preparation of graduates with a sound understanding of both power systems and machine learning so they are better equipped to manage the emerging smart grid.

f. Contents with suggested contact hours

	Topics		Contact
		Book	Hours
1	Foundations of Machine Learning	TD	6
	Role of Machine Learning in Smart Grids	RG	
	Existing AI trends in the energy sector including		
	companies and implications in their business.		

	Basic Concepts of Machine Learning		
	Applications of Machine Learning		
	Types of Machine Learning		
	Supervised Learning Algorithm		
	Unsupervised Learning Algorithm		
	Semi-supervised Learning Algorithm		
	Reinforcement Learning Algorithm		
	Machine Learning Process Architecture		
	Deep Learning vs Machine Learning		
	Classification and Regression		
	Model Selection and Feature Selection		
2	Machine Learning Techniques	RA	15
	ARIMA, Linear Regression, and Multiple Regression for	GD	
	Wind/solar energy forecasting		
	k-means Clustering for		
	Identification of consumer type from smart meter		
	data		
	Decision Trees for		
	Power Theft Detection		
	Support Vector Machines for		
	Anamoly Detection		
	Artificial Neural Networks		
	Fault Detection and Isolation		
3	Predictive Analytics for Planning and Operations	RA	6
	Forecasting Wind and Solar resources	AS	
	Wind and Solar Forecasting Overview		
	Data-driven Wind and Solar Forecasting		
	Wind and Solar Forecasting Datasets		
	Wind/Solar Short-term pattern		
	Renewable forecasting performance evaluation metrics		
4	ML to Compete and Cooperate in Electricity Markets	RW	6

	Optimal bidding in centralized energy markets by		
	Reactive Reinforcement Learning		
	Q-Learning		
	Negotiations in bilateral electricity trading by		
	Evolutionary reinforcement learning		
	Bayesian Learning		
5	Modelling and Forecasting Electricity Loads and	RW	6
	Prices	AS	
	Stylized Facts of Loads and Prices		
	Price Spikes		
	Seasonality		
	Seasonal Decomposition		
	Mean Reversion		
	Distribution of Electricity Prices		
	Bottom-up and Top-down forecasting models		
	Forecasting Electric Loads		
	Factors Affecting Load Patterns, including		
	statistics, behaviours, technology enhancements,		
	etc.		
	AI-based Methods		
	Statistical Methods		
	Forecasting Energy Prices		
	Overview of Modeling Approaches		
	Statistical Methods and Price Forecasting		
	Quantitative Models and Derivatives Valuation		
6	Other ML Applications in Power Systems		6
	Partial Discharge Pattern Recognition in High Voltage	RA	
	Testing	TD	
	Energy Disaggregation or Nonintrusive Load Monitoring		
	Informed Power System operation by Network Topology		
	Detection		

Total		45
Big Data Applications in Demand Response		
Hydro-thermal scheduling,		
diagnosis,		
Identification, Classification, Fault location and	fault	
Power System State Estimation		
equipment failure prediction		
Predictive vs Reactive Maintenance – AI behin	d	
Trustworthy Machine Learning for Power Syste	ms	
Machine learning enabled cyber security in small	art grid	

- g. Details of lab work, and workshop practice (if applicable). N/A
- h. Recommended Reading (including Textbooks and Reference books with dates).

S.	Title	Author(s)	Assigned	Remarks
No.			Code	
1	Introduction to AI Techniques for Renewable Energy Systems (2021)	Editors: Tripathi and Dubey	TD	Textbook
2	Advanced Data Analytics for Power Systems (2021)	Ali Tajer, Samir M. Perlaza Publisher: Cambridge University Press	AS	Reference
3	Big Data Applications in Power Systems (2018)	Editors: Reza Arghandeh and Yuxun Zhou	RA	Reference
4	HandbookofStatisticalAnalysisandDataMiningApplications	Robert Nisbet, Gary Miner, Ken Yale	RG	Reference

		Gareth James,		
5	An Introduction to Statistical	Daniela Witten,		Deference
	Learning (2021)	Trevor Hastie, Robert	GD	Relefence
		Tibshirani		
	Modeling and Forecasting			
6	Electricity Loads and Prices	Rafal Weron	RW	Reference
	<u>(2006)</u>			

i. Assessments

Mid-term, Final Exam and quizzes, assignment etc.